

 /var/

 Various programming stuff

	
 Ai

	
 Android

	
 Clojure

	
 Css

	
 Django

	
 Elixir

	
 Flask

	
 Gaming

	
 Git

	
 Html

	
 Javascript

	
 Networking

	
 Pelican

	
 Postgresql

	
 Python

	
 Spring

	
 Unix

	
 Wagtail

 Hello! If you are using an ad blocker but find something useful here
 and want to support me please consider disabling your ad blocker for this site.

 Thank you,

 Serafeim

 PDFs in Django like it’s 2022!

Mon 14 February 2022

In a previous article I had written a very comprehensive
guide on how to render PDFs in Django using tools like reportlab and xhtml2pdf. Although these tools
are still valid and work fine I have decided that usually it’s way too much pain to set them up to work properly.

Another common way to generate PDFs in the Python world is using the weasyprint library.
Unfortunately this library has way too many requirements and installing it on Windows
is worse than putting needles in your eyes. I don’t like needles in my eyes, thank you very much.

There are various other ways to generate PDFs like using a report server like Japser or
SQL Server Reporting Services but these are too “enterpris-y” for most people and require
another server, a learning curve, etc.

I was actually so disappointed by the status of PDF generation today that in some recent projects
instead of the PDF file I generated an HTML page with a nice pdf-printing stylesheet and
instructed the users to print it as PDF (from the browser) so as to generate the PDF themselves!

However, recently I found another way to generate PDFs in my Django projects which I’d like to share
with you: Using the wkhtmltopdf tool. The wkhtmltopdf is a command line program that has binaries
for more or less every operating system. It’s a single binary that you can download and put it in
a directory, you don’t need to run another server or any fancy installation. Only an executable. To
use it? You call it like wkhtmltopdf http://google.com google.pdf and it will download the url
and generate the pdf! It’s as simple as that! This tool is old and heavily used but only recently I
researched its integration with Django.

Please notice that there’s actually a django-wkhtmltopdf library for integrating wkhtmltopdf with
django. However I din’t have good results while trying to use it (maybe because of my Windows dev
environment). Also, implementing the integration myself allowed my to more easily understand what’s
happening and better debug the wkhtmltopdf. However YMMV, after you read this small post to understand
how the integration works you can try django-wkhtmltopdf to see if it works in your case.

In any way, the first thing you need to do is download and install wkhtmltopdf for your platform and save its
full path in your settings.py like this:

For linux
WKHTMLTOPDF_CMD = '/usr/local/bin/wkhtmltopdf'

or for windows
WKHTMLTOPDF_CMD = r'c:\util\wkhtmltopdf.exe'

Notice that I’m using the full path. I have observed that even if you put the binary to a directory
in the system PATH it won’t be picked (at least in my case) thus I recommend using the full path.

Now, let’s suppose we’ve got a DetailView (let’s call it SampleDetailView) that we’d like to render as PDF. We can use the following
CBV for that:

from subprocess import check_output
from django.template import Context, Template
from django.template.loader import get_template
from tempfile import NamedTemporaryFile
import os

class SamplePdfDetailView(SampleDetailView):
 def get_resp_from_file(self, filename, context):
 template = get_template(filename)
 resp = template.render(context)
 return resp

 def get_resp_from_string(self, template_str, context):
 template = Template(template_str)
 resp = template.render(Context(context))
 return resp

 def render_to_response(self, context):
 context['pdf'] = True
 # We can use either
 resp = self.get_resp_from_string("<h1>Hello, world! {{ object }}</h1>", context)
 # or
 # resp = self.get_resp_from_file('test_pdf.html', context)

 tempfile = NamedTemporaryFile(mode='w+b', buffering=-1,
 suffix='.html', prefix='tmp',
 dir=None, delete=False)

 tempfile.write(resp.encode('utf-8'))
 tempfile.flush()
 tempfile.close()
 cmd = [
 settings.WKHTMLTOPDF_CMD,
 '--page-size', 'A4', '--encoding', 'utf-8',
 '--footer-center', '[page] / [topage]',
 '--enable-local-file-access', tempfile.name, '-']
 # print(" ".join(cmd))
 out = check_output(cmd)

 os.remove(tempfile.name)
 return HttpResponse(out, content_type='application/pdf')

We can put the pdf view on our url patterns right next to our DetailView i.e:

[
 ...
 path(
 "detail/<int:pk>/",
 permission_required("core.user")(
 views.SampleDetailView.as_view()
),
 name="detail",
),
 path(
 "detail/<int:pk>/pdf/",
 permission_required("core.user")(
 views.SamplePdfDetailView.as_view()
),
 name="detail_pdf",
),
 ...
]

Let’s try to understand how this works: First of all notice that we have two options, either
create a PDF from an html string or from a normal template file. For the first option we pass
the full html string to the get_resp_from_string and the context and we’ll get the rendered html
(i.e the context will be applied to the template).
For the second option we pass the filename of a django template and the context. Notice that
there’s a small difference on how the template.render() method is called in the two methods.

After that we’ve got an html file saved in the resp string. We want to give this to wkhtmltopdf so
as to be converted to PDF. To do that we first create a temporary file using the NamedTemporaryFile
class and write the resp to it. Then we call wkhtmltopdf passing it this temporary file. Notice we
use the subprocess.check_output function that will capture the output of the command and return it.

Finally we delete the temporary file and return the pdf as an HttpResponse.

We call the wkhtmltopdf like this:

c:\util\wkhtmltopdf.exe --page-size A4 --encoding utf-8 --footer-center [page] / [topage] --enable-local-file-access C:\Users\serafeim\AppData\Local\Temp\tmp_lh5r6f9.html -

The page-size can be changed to letter if you are in the US. The encoding should be utf-8. The —footer-center option adds a
footer to the PDF page with the current page and the total number of pages. The —enable-local-file-access is very important
since it allows wkhtmltopdf to access local files (in the filesystem) and not only remote ones. After that we’ve got the
full path of our temporary file and following is the - which means that the pdf output will be on the stdout (so we’ll capture it
with check_output).

Notice that there’s a commented out print command before the check_output call. If you have problems you can call this
command from your command line to debug the wkhtmltopdf command (don’t forget to comment out the os.remove line to keep
the temporary file). Also, wkhtmltopdf will output some stuff while rendering the command, for example something like:

Loading pages (1/6)
Counting pages (2/6)
Resolving links (4/6)
Loading headers and footers (5/6)
Printing pages (6/6)
Done

You can pass the --quiet option to hide this output. However the output is useful to see what wkhtmltopdf is doing in
case there are problems so I recommend leaving it on while developing. Let’s take a look at a problematic output:

Loading pages (1/6)
Error: Failed to load file:///static/bootstrap/css/bootstrap.min.css, with network status code 203 and http status code 0 - Error opening /static_edla/bootstrap/css/govgr_bootstrap.min.css: The system cannot find the path specified.
[...]
Counting pages (2/6)
Resolving links (4/6)
Loading headers and footers (5/6)
Printing pages (6/6)
Done

The above output means that our template tries to load a css file that wkhtmltopdf can’t find and errors out! To understand this error, I had a line like this in my template:

<link href="{% static 'bootstrap/css/bootstrap.min.css' %}" rel="stylesheet">

which will be converted to a link like `/static/bootstrap/css/bootstrap.min.css.
However notice that I tell wkhtmltopdf to render a file from my temporary directory, it doesn’t
know where that link points to!
Following this thing you need to be extra careful to include everything in your HTML-pdf template and not
use any external links. So all styles must be inlined in the template using <style> tags and all images must be
converted to data images with base64, something like:

To do that in python for a dynamic image you can use something like:

import base64

def convert_to_data(image):
 return 'data:image/xyz;base64,{}'.format(base64.b64encode(image).decode('utf-8'))

and then use that as your image src (notice I’m using image/xyz here for an
arbitrary image, please use the correct image type if you know it i.e image/png or image/jpg).

If you’ve got a static image you want to include you can convert it to base64 using an online service like this,
or read it with python and convert it:

import base64

with open('static/images/image.png', 'rb') as image:
 print(base64.b64encode(image.read()).decode('utf-8'))

Instead of a DetailView we could use the same approach for any kind of CBV. If you are to use the PDF
response to multiple CBVs I recommend exporting the functionality to a mixin and inheriting from that also
(see my CBV guide for more).

Finally, the big question in the room is why should I convert my template to a file and pass that to
wkhtmltopdf, can’t I use the URL of my template, i.e pass wkhtmltopdf something like http://example.com/app/detail/321/?

By all means you can! This will also enable you to avoid using inline styles and media!!
However keep in mind that the usual case is that this view will not be public but will need an authenticated user to
access it; wkhtmltopdf is publicly trying to access it, it doesn’t have any rights to it so you’ll get a 404 or 403 error!
Of course you can
start an adventure on authenticating it somehow (and maybe doing something stupid) or you can just follow my lead
and render it to a file :)

 Posted by
 Serafeim Papastefanos

Mon 14 February 2022
 django

 django, python, pdf, wkhtmltopdf

 Tweet

 Comments

 Please enable JavaScript to view the comments powered by Disqus.

 Atom
 |
 RSS

 Support me

 You can show your appreciation for anything useful you've found here by
 buying me a coffee

 or donating me some bitcoin to this address:
 bc1qx42vp8napheaewhnx0rk0mttdrdrtvw6czvxhl

 Subscribe

 Do you want to get notified via email when I post new content?

 Click here to subscribe!

 Recent Posts

 	
 A simple OpenID connect tutorial

	
 Simple Django - DataTables integration

	
 AI auto-subtitling

	
 HTML form disable after submit

	
 Multiple storages for the same FileField in Django

 Categories

 	ai
	android
	clojure
	css
	django
	elixir
	flask
	gaming
	git
	html
	javascript
	networking
	pelican
	postgresql
	python
	spring
	unix
	wagtail

 Tags

 openid, openid-connect, oidc, http, keycloak, python, django, jquery, datatables, ai, whisper, whisper.cpp, subtitles, video, auto-subtitling, subtitiling, transcribe, html, javascript, media, storage, unpoly, access, database, windows, accdb, mdb, postgresql, development, inlines, clojure, cmd, pdf, wkhtmltopdf, forward-proxy, reverse-proxy, proxy, networking, dj-rest-auth, rest, django-rest-framework, authentication, tokens, migrations, foreignkey, dark-souls, dark-souls-2, dark-souls-3, autohotkey, matplotlib, hashids, wagtail, elixir, osmon, phoenix, erlang, os-monitoring, forms, django-crispy-forms, django-widget-tweaks, ecto, queries, declarative, form, php, select2, autocompelte, ajax, android, kotlin, adapter, filter, async, tasks, django-rq, rq, du, unix, linux, disk-usage, cbv, middleware, class-based-views, react, redux, hyperapp, immutable, es6, youtube, youtube-dl, ffmpeg, django-rest-auth, python-2, python-3, plpgsql, component, ag-grid, grid, bash, cron, pandas, scipy, numpy, pivot, pivot_table, ipython, jupyter, notebook, query, q, imgur, console, research, debug, werkzeug, django-extensions, 404, error, spring, spring-boot, java, ldap, profiles, settings, properties, yaml, configuration, deploy, init.d, react-redux, redux-thunk, redux-form, react-router, react-router-redux, react-notification, history, babel, babelify, browserify, watchify, uglify, boilerplate, tutorial, introduction, fixed-data-tables, FixedDataTable, reportlab, xhtml2pdf, node, npm, generic, tables, flux, jobs, asynchronous, scheduling, redis, pusher, auditing, css, design, boostrap-material-design, less, node.js, gmail, security, google, flask, mongodb, heroku, spring-security, git, github, branching, static-html, github.io, pelican, github-pages, rst

 Yearly archives

 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023

 GitHub Repos

 	Status updating...

 @spapas on GitHub

 Follow @_serafeim_

 Copyright © 2013–2023 Serafeim Papastefanos —
 Powered by Pelican

